Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Yaoxue Xuebao ; 58(4):928-937, 2023.
Article in Chinese | EMBASE | ID: covidwho-20244443

ABSTRACT

Dayuanyin (DYY) has been shown to reduce lung inflammation in both coronavirus disease 2019 (COVID-19) and lung injury. This experiment was designed to investigate the efficacy and mechanism of action of DYY against hypoxic pulmonary hypertension (HPH) and to evaluate the effect of DYY on the protection of lung function. Animal welfare and experimental procedures are approved and in accordance with the provision of the Animal Ethics Committee of the Institute of Materia Medica, Chinese Academy of Medical Science. Male C57/BL6J mice were randomly divided into 4 groups: control group, model group, DYY group (800 mg.kg-1), and positive control sildenafil group (100 mg.kg-1). The animals were given control solvents or drugs by gavage three days in advance. On day 4, the animals in the model group, DYY group and sildenafil group were kept in a hypoxic chamber containing 10% +/- 0.5% oxygen, and the animals in the control group were kept in a normal environment, and the control solvent or drugs continued to be given continuously for 14 days. The right ventricular systolic pressure, right ventricular hypertrophy index, organ indices and other metrics were measured in the experimental endpoints. Meantime, the expression levels of the inflammatory factors in mice lung tissues were measured. The potential therapeutic targets of DYY on pulmonary hypertension were predicted using network pharmacology, the expression of nuclear factor kappa B (NF- kappaB) signaling pathway-related proteins were measured by Western blot assay. It was found that DYY significantly reduced the right ventricular systolic pressure, attenuated lung injury and decreased the expression of inflammatory factors in mice. It can also inhibit hypoxia-induced activation of NF- kappaB signaling pathway. DYY has a protective effect on lung function, as demonstrated by DYY has good efficacy in HPH, and preventive administration can slow down the disease progression, and its mechanism may be related to inhibit the activation of NF-kappaB and signal transducer and activator of transcription 3 (STAT3) by DYY.Copyright © 2023, Chinese Pharmaceutical Association. All rights reserved.

2.
Human Gene ; 36 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2296239

ABSTRACT

COVID-19 has been found to affect the expression profile of several mRNAs and miRNAs, leading to dysregulation of a number of signaling pathways, particularly those related to inflammatory responses. In the current study, a systematic biology procedure was used for the analysis of high-throughput expression data from blood specimens of COVID-19 and healthy individuals. Differentially expressed miRNAs in blood specimens of COVID-19 vs. healthy specimens were then identified to construct and analyze miRNA-mRNA networks and predict key miRNAs and genes in inflammatory pathways. Our results showed that 171 miRNAs were expressed as outliers in box plot and located in the critical areas according to our statistical analysis. Among them, 8 miRNAs, namely miR-1275, miR-4429, miR-4489, miR-6721-5p, miR-5010-5p, miR-7110-5p, miR-6804-5p and miR-6881-3p were found to affect expression of key genes in NF-KB, JAK/STAT and MAPK signaling pathways implicated in COVID-19 pathogenesis. In addition, our results predicted that 25 genes involved in above-mentioned inflammatory pathways were targeted not only by these 8 miRNAs but also by other obtained miRNAs (163 miRNAs). The results of the current in silico study represent candidate targets for further studies in COVID-19.Copyright © 2023 Elsevier B.V.

3.
Biomedical Research and Therapy ; 9(11):5394-5409, 2022.
Article in English | EMBASE | ID: covidwho-2272442

ABSTRACT

Rheumatoid Arthritis (RA) is a systemic, autoimmune, inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration in the synovial tissues, and progressive destruction of cartilage and bones. This disease often leads to chronic disability. More recently, activation of synovial fibroblasts (SFs) has been linked to innate immune responses and several cellular signalingpathways that ultimately result in the aggressive and invasive stages of RA. SFs are the major sources of pro-inflammatory cytokines in RA synovium. They participate in maintaining the inflammatory state that leads to synovial hyperplasia and angiogenesis in the inflamed synovium. The altered apoptotic response of synovial and inflammatory cells has been connected to these alterations of inflamed synovium. RA synovial fibroblasts (RASFs) have the ability to inhibit several apoptotic proteins that cause their abnormal proliferation. This proliferation leads to synovial hyperplasia. Apoptotic pathway proteins have thus been identified as possible targets for modifying the pathophysiology of RA. This review summarizes current knowledge of SF activation and its roles in the inhibition of apoptosis in the synovium, which is involved in joint damage during the effector phase of RA development.Copyright © 2022 Biomedpress.

4.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2270997

ABSTRACT

Background: To search for molecular biomarkers of pulmonary pathologies using non-invasive samples, such as urine, is of high clinical relevance. However, there are almost no proteomic studies using urine applied to respiratory diseases. Aim(s): To develop a biomarker discovery strategy using non-targeted proteomics in urine with applicability to different pulmonary diseases. Method(s): Urine samples were centrifuged and DTT treated to decrease uromodulin (THP). Low-THP samples were concentrated (ultrafiltration), ultracentrifugated, and exosome free urine was analysed using LC-MS/MS. GO terms/Pathway analyses were performed using STRING database. Result(s): Urine proteome (765 proteins) was enriched (FDR < 0.05) in proteins from different tissues, including respiratory system (N = 124), lung (N = 107), and immune system (N = 88). We detected an enrichment of relevant pathways for respiratory diseases, including several innate (e.g., TLR and NFkB pathways, complement system), and adaptive (e.g., interleukin signalling) immune system pathways. Some of these proteins have been previously studied in respiratory system disease (e.g., MPO, NAPSA, CHL1, FREM2, PLG), lower respiratory tract disease (e.g., NCAM1, MTOR, SERPINA1), viral infectious disease (e.g., ITIH4, CD209, CLEC4M, CD55), or specific pathologies such as coronavirus infection (e.g., ACE2, TMPRSS2), bronchiectasis (e.g., SAA1, SAA2, ELANE) or asthma (e.g., IGFALS, IGFBP7, HSPG2, DPP4, CD44, IL6R, MASP1). Conclusion(s): We have developed a protocol for the detection of proteomic biomarkers in urine. This proteome is enriched in proteins from the immune and respiratory systems, with a potential clinical and translational relevance.

5.
Pharmacological Research - Modern Chinese Medicine ; 2 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2269814

ABSTRACT

Background: SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide;therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives: This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method(s): We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Result(s): We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion(s): Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.Copyright © 2021

6.
Japanese Journal of Antibiotics ; 75(2):60-71, 2022.
Article in English | EMBASE | ID: covidwho-2288230

ABSTRACT

Considering the urgency of the ongoing COVID-19 pandemic, detection of new mutant strains and potential re-emergence of novel coronaviruses, repurposing of drugs such as ivermectin could be worthy of attention. This review article aims to discuss the probable mechanisms of action of ivermectin against SARS-CoV-2 by summarizing the available literature over the years. A schematic of the key cellular and biomolecular interactions between ivermectin, host cell, and SARS-CoV-2 in COVID-19 pathogenesis and prevention of complications has been proposed.Copyright © 2022 Japan Antibiotics Research Association. All rights reserved.

7.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2285029

ABSTRACT

The SARS-CoV-2 is the betacoronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Severe COVID-19 affects approximately 10-15% of patients and results in prolonged morbidity and mortality. Little is known about the immunophenotypic changes of the lung parenchyma driven by the viral infection in patients who die of severe COVID-19. Ultrasound-guided lung biopsies (LB) were collected (IRB approval#1561/21) within few hours from death in 15 severe COVID-19 patients between November 2020 and January 2021, in two patients who underwent lung transplantation after COVID-19 and in one patient who had surgery for bacterial superinfection during COVID-19 disease. All samples underwent histologic and immunohistochemistry evaluation and molecular profiling using the nCounter Host Response and Coronavirus Panel plus. As controls, lungs from end-stage usual interstitial pneumonia (UIP;n=9) and from lobectomy for lung cancer (Norm;n=5) were used. Eleven lungs (61%) were positive for SARS-CoV-2 RNA. Signs of diffuse alveolar damage (DAD) were observed in 6 patients (30%). COVID-19 lungs showed a marked macrophage infiltration with M2 polarization compared with controls. Globally, COVID-19 lungs showed distinct molecular profiles from UIP or Norm lungs. Specifically, a marked upregulation of interferon-genes that was directly correlated with SARS-CoV-2 genes was seen in COVID-19 lungs. COVID-19-specific genes signatures (Log2FC >1.5;adj p<0.05) obtained using VENN diagram showed impairment of the STAT3-pathway accompanied by the upregulation of the NFkB signaling. Results herein provide new insights into lung alterations induced by severe COVID-19 and suggest novel potential targets for therapeutic intervention.

8.
Mol Cell Proteomics ; 22(5): 100537, 2023 05.
Article in English | MEDLINE | ID: covidwho-2272028

ABSTRACT

The ancestral SARS-CoV-2 strain that initiated the Covid-19 pandemic at the end of 2019 has rapidly mutated into multiple variants of concern with variable pathogenicity and increasing immune escape strategies. However, differences in host cellular antiviral responses upon infection with SARS-CoV-2 variants remain elusive. Leveraging whole-cell proteomics, we determined host signaling pathways that are differentially modulated upon infection with the clinical isolates of the ancestral SARS-CoV-2 B.1 and the variants of concern Delta and Omicron BA.1. Our findings illustrate alterations in the global host proteome landscape upon infection with SARS-CoV-2 variants and the resulting host immune responses. Additionally, viral proteome kinetics reveal declining levels of viral protein expression during Omicron BA.1 infection when compared to ancestral B.1 and Delta variants, consistent with its reduced replication rates. Moreover, molecular assays reveal deferral activation of specific host antiviral signaling upon Omicron BA.1 and BA.2 infections. Our study provides an overview of host proteome profile of multiple SARS-CoV-2 variants and brings forth a better understanding of the instigation of key immune signaling pathways causative for the differential pathogenicity of SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteome , Pandemics , Antiviral Agents , Antibodies, Neutralizing
9.
Metab Syndr Relat Disord ; 21(3): 141-147, 2023 04.
Article in English | MEDLINE | ID: covidwho-2246253

ABSTRACT

Background: There is a limited understanding of molecular and cellular events that derive disease progression in patients with corona virus disease 2019 (COVID-19). Receptor for advanced glycation end products (RAGE) is hyperactive in development and complications of several diseases by mediating oxidative stress and inflammation in the body. The present study aims to explore activation of RAGE signaling in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with preexisting comorbidities, including hypertension and or diabetes. Methods: A total of 442 subjects with COVID-19, were recruited for the study. The molecular mechanism of Covid-19 was explored in blood cells, using ELISA, RT- PCR and Western blot. Results: Enhanced levels of ligands of RAGE, including AGEs, S100, and high-mobility group box-1 (HMGB-1) were observed in COVID-19 patients with severe diseases; however, their level was significantly higher in COVID-19 patients with comorbidities compared to COVID-19 patients without comorbidities. The expression of RAGE in parallel to ligands accumulation was significantly increased in patients with severe disease and comorbidities compared to COVID-19 patients with severe disease without comorbidities. The expression of downstream effectors of RAGE, including STAT-3 and nuclear factor kappa B (NF-kB), was also enhanced and their activity was increased in COVID-19 patients with comorbidities. Levels of inflammatory and oxidative stress biomarkers were markedly increased in COVID-19 patients with comorbidities. Conclusions: We conclude that upregulated RAGE axis plays critical role, to worsen the severity of the SARS-CoV-2 infection in patients with preexisting comorbidities and partly explain inflammatory and oxidative stress storm in severe COVID-19 patients.


Subject(s)
COVID-19 , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Ligands , COVID-19/complications , SARS-CoV-2/metabolism , NF-kappa B/metabolism
10.
J Integr Complement Med ; 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2227084
11.
Front Pharmacol ; 13: 1018761, 2022.
Article in English | MEDLINE | ID: covidwho-2199109

ABSTRACT

SARS-CoV viruses have been shown to downregulate cellular events that control antiviral defenses. They adopt several strategies to silence p53, key molecule for cell homeostasis and immune control, indicating that p53 has a central role in controlling their proliferation in the host. Specific actions are the stabilization of its inhibitor, MDM2, and the interference with its transcriptional activity. The aim of our work was to evaluate a new approach against SARS-CoV-2 by using MDM2 inhibitors to raise p53 levels and activate p53-dependent pathways, therefore leading to cell cycle inhibition. Experimental setting was performed in the alveolar basal epithelial cell line A549-hACE2, expressing high level of ACE2 receptor, to allow virus entry, as well as p53 wild-type. Cells were treated with several concentrations of Nutlin-3 or RG-7112, two known MDM2 inhibitors, for the instauration of a cell cycle block steady-state condition before and during SARS-CoV-2 infection, and for the evaluation of p53 activation and impact on virus release and related innate immune events. The results indicated an efficient cell cycle block with inhibition of the virion release and a significant inhibition of IL-6, NF-kB and IFN-λ expression. These data suggest that p53 is an efficient target for new therapies against the virus and that MDM2 inhibitors deserve to be further investigated in this field.

12.
Wound Repair and Regeneration ; 30(5):A3, 2022.
Article in English | EMBASE | ID: covidwho-2063960

ABSTRACT

Background: It has long been known that the fetal response to skin injury is regenerative, with a lack of abnormal collagen deposition or scar, and restoration of normal dermal architecture. This response is associated with minimal inflammation.We have shown that the decreased inflammation is due to decreased production of pro-inflammatory cytokine production compared to the adult response. In addition, we have shown fetal tendon and the fetal heart can heal by regeneration, with restoration of structure and function, and is also associated with decreased proinflammatory cytokine production and decreased inflammation. We hypothesized that strategies targeting inflammation and associated oxidative stress could be used in adult diseases. We have identified diabetic wounds, acute lung injury, and colitis where inflammation and oxidative stress plays a central role in the pathogenesis the disease. Material(s) and Method(s): We have developed a novel strategy using nanotechnology to target inflammation and oxidative stress. We have conjugated novel cerium oxide nanoparticles, which act as potent scavengers of reactive oxygen species, to the anti-inflammatory microRNA miR146a, which suppresses the NFkB pathway and the production of the pro-inflammatory cytokines IL-6 and IL-8. Result(s): In diabetic wounds, impaired healing is associated with chronic inflammation and oxidative stress. We have demonstrated, in both small and large diabetic animals models, that CNP-miR146a can decrease inflammation and oxidative stress and correct the diabetic wound healing impairment and promote regeneration, similar to rates of healing in non-diabetic animals. We have also examined other disease states where inflammation and oxidative stress is pathogenic. Following acute lung injury, inflammation and oxidative stress leads to the development of adult respiratory distress syndrome or ARDS, the number one cause of mortality with COVID-19, and is associated with a 30-50% mortality. Inflammation and oxidative stress play a central role in the pathogenesis of ARDS. We have shown in models of acute lung injury, including bleomycin, LPS, MRSA, ventilator induced lung injury (VILI) and mustard gas, that CNP-miR146a decreases inflammation and oxidative stress, promotes regeneration and restoration of function, and decreased mortality. Finally, pathogenic inflammation plays a central role in the development of colitis or inflammatory bowel disease. We have shown that CNP-miR146a enemas can prevent progression of disease, restore weight gain, and lacks the adverse effects of systemic immunosuppression. Conclusion(s): We have used our understanding of the mechanisms of fetal regeneration following injury, which progresses with minimal inflammation and oxidative stress, to develop strategies targeting these processes to promote regeneration in adult disease.

13.
Osteoarthritis and Cartilage ; 30:S6, 2022.
Article in English | EMBASE | ID: covidwho-2004251

ABSTRACT

Purpose: The field of osteoarthritis (OA) biology is rapidly evolving and brilliant progress has been made this year as well. Methods: Landmark studies of OA biology published in 2021 and early 2022 were selected through PubMed searches and classified by their molecular mechanisms, and it was largely divided into the intra-cellular mechanisms and the inter-compartment or inter-cellular interaction in OA progression. Results: The intra-cellular mechanisms involving OA progression included 1) Piezo1/TRPV4-mediated calcium signaling, 2) low grade inflammation by TLR-CD14-LBP complex and IKKβ-NFkB signaling, 3) PGRN/TNFR2/14-3-3ε/Elk-1 anabolic cascade, 4) G protein-coupled receptor (GPCR) signaling, 5) mechanical loading-cilia/Ift88-hedgehog signaling, 6) mitochondrial fission by ERK1/2-DRP1 pathway, and 7) hypoxia-DOT1L-H3K79 methylation pathway. The studies on inter-compartment or inter-cellular interaction in OA progression included the following subjects: 1) the anabolic role of Lubricin, a proteoglycan from superficial zone cells, 2) osteoclast-chondrocyte interaction via exosomal miRNA and sphingosine 1-phosphate (S1P), 3) αV integrin-mediated TGFβ activation by mechanical loading, 4) TGFβ-mediated suppression of sclerostin in osteocytes, 5) catabolic role of Flightless I as a DAMPs-triggering molecule, and 6) catabolic role of paracrine signaling from fat. Conclusions: Despite the disastrous Covid-19 pandemic situation, many outstanding studies have expanded the boundary of OA biology. They give us not only critical insight on pathophysiology, but also clue for the treatment of OA.

14.
Front Pharmacol ; 13: 871583, 2022.
Article in English | MEDLINE | ID: covidwho-1903110

ABSTRACT

SARS-CoV-2 infection affects different organs and tissues, including the upper and lower airways, the lung, the gut, the olfactory system and the eye, which may represent one of the gates to the central nervous system. Key transcriptional factors, such as p53 and NF-kB and their reciprocal balance, are altered upon SARS-CoV-2 infection, as well as other key molecules such as the virus host cell entry mediator ACE2, member of the RAS-pathway. These changes are thought to play a central role in the impaired immune response, as well as in the massive cytokine release, the so-called cytokine storm that represents a hallmark of the most severe form of SARS-CoV-2 infection. Host genetics susceptibility is an additional key side to consider in a complex disease as COVID-19 characterized by such a wide range of clinical phenotypes. In this review, we underline some molecular mechanisms by which SARS-CoV-2 modulates p53 and NF-kB expression and activity in order to maximize viral replication into the host cells. We also face the RAS-pathway unbalance triggered by virus-ACE2 interaction to discuss potential pharmacological and pharmacogenomics approaches aimed at restoring p53/NF-kB and ACE1/ACE2 balance to counteract the most severe forms of SARS-CoV-2 infection.

15.
Topics in Antiviral Medicine ; 30(1 SUPPL):117, 2022.
Article in English | EMBASE | ID: covidwho-1880460

ABSTRACT

Background: The innate immune system is a powerful anti-viral defense mechanism, which includes the interferon (IFN) system and autophagy. Thus, successful pathogens like SARS-CoV-2 need to counteract or evade these defenses to establish an infection. However, due to its ongoing, worldwide spread in the human population SARS-CoV-2 is evolving and in the meantime four variants with selection advantages (variants of concern) emerged. Methods: Using expression constructs for 29 SARS-CoV-2 proteins we evaluated the impact of individual viral proteins on induction of cytokines (IFNA4, IFNB1, IRF3-signalling, NF-κB-signaling) and cytokine signaling (IFNα2, IFNβ, IFNγ, IFNa;1, IL-1α, TNFα) in luciferase reporter assays, validated by endogenous transcription factor phosphorylation analysis. We assessed the influence of SARS-CoV-2 proteins on autophagy using a flow cytometry-based system. Underlying molecular mechanisms were investigated on an endogenous level using Western blot, confocal fluorescence microscopy, and flow cytometry. In addition, we examined the susceptibility of SARS-CoV-2 including all variants of concern towards type-I,-II, and-III interferons. Results: To understand how SARS-CoV-2 efficiently manipulates the host's innate immune defenses, we systematically analyzed the impact of SARS-CoV-2 encoded proteins on induction of various IFNs and pro-inflammatory cytokines, IFN signaling, and autophagy. Our results reveal the range of innate immune antagonists encoded by SARS-CoV-2 and we characterized selected molecular mechanisms employed by Nsp1 and Nsp14 to downregulate the IFN system or ORF3a and ORF7a to prevent autophagic degradation. Interestingly, our assays show that variants of concern of SARS-CoV-2 remain sensitive to type-II interferon signaling but show increased resistance towards type-I and/or type-III interferons. Conclusion: SARS-CoV-2 has evolved to counteract innate immunity using several synergistic approaches but remains relatively sensitive to type-II and-III interferons. However, emerged variants of concern remain sensitive overall but are less susceptible towards IFNα2/β and IFNa;1 than early SARS-CoV-2 isolates.

16.
Int J Mol Sci ; 23(5)2022 Feb 26.
Article in English | MEDLINE | ID: covidwho-1736945

ABSTRACT

Disruption of the alveolar-endothelial barrier caused by inflammation leads to the progression of septic acute lung injury (ALI). In the present study, we investigated the beneficial effects of simvastatin on the endotoxin lipopolysaccharide (LPS)-induced ALI and its related mechanisms. A model of ALI was induced within experimental sepsis developed by intraperitoneal injection of a single non-lethal LPS dose after short-term simvastatin pretreatment (10-40 mg/kg orally). The severity of the lung tissue inflammatory injury was expressed as pulmonary damage scores (PDS). Alveolar epithelial cell apoptosis was confirmed by TUNEL assay (DNA fragmentation) and expressed as an apoptotic index (AI), and immunohistochemically for cleaved caspase-3, cytochrome C, and anti-apoptotic Bcl-xL, an inhibitor of apoptosis, survivin, and transcriptional factor, NF-kB/p65. Severe inflammatory injury of pulmonary parenchyma (PDS 3.33 ± 0.48) was developed after the LPS challenge, whereas simvastatin significantly and dose-dependently protected lung histology after LPS (p < 0.01). Simvastatin in a dose of 40 mg/kg showed the most significant effects in amelioration alveolar epithelial cells apoptosis, demonstrating this as a marked decrease of AI (p < 0.01 vs. LPS), cytochrome C, and cleaved caspase-3 expression. Furthermore, simvastatin significantly enhanced the expression of Bcl-xL and survivin. Finally, the expression of survivin and its regulator NF-kB/p65 in the alveolar epithelium was in strong positive correlation across the groups. Simvastatin could play a protective role against LPS-induced ALI and apoptosis of the alveolar-endothelial barrier. Taken together, these effects were seemingly mediated by inhibition of caspase 3 and cytochrome C, a finding that might be associated with the up-regulation of cell-survival survivin/NF-kB/p65 pathway and Bcl-xL.


Subject(s)
Acute Lung Injury , NF-kappa B , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Alveolar Epithelial Cells/metabolism , Apoptosis , Caspase 3/genetics , Caspase 3/metabolism , Cytochromes c/metabolism , Endotoxins/adverse effects , Humans , Lipopolysaccharides/toxicity , Lung/pathology , NF-kappa B/metabolism , Simvastatin/adverse effects , Survivin/genetics , Up-Regulation
17.
Front Immunol ; 13: 818023, 2022.
Article in English | MEDLINE | ID: covidwho-1674343

ABSTRACT

Alu retrotransposons belong to the class of short interspersed nuclear elements (SINEs). Alu RNA is abundant in cells and its repetitive structure forms double-stranded RNAs (dsRNA) that activate dsRNA sensors and trigger innate immune responses with significant pathological consequences. Mechanisms to prevent innate immune activation include deamination of adenosines to inosines in dsRNAs, referred to as A-to-I editing, degradation of Alu RNAs by endoribonucleases, and sequestration of Alu RNAs by RNA binding proteins. We have previously demonstrated that widespread loss of Alu RNA A-to-I editing is associated with diverse human diseases including viral (COVID-19, influenza) and autoimmune diseases (multiple sclerosis). Here we demonstrate loss of A-to-I editing in leukocytes is also associated with inflammatory bowel diseases. Our structure-function analysis demonstrates that ability to activate innate immune responses resides in the left arm of Alu RNA, requires a 5'-PPP, RIG-I is the major Alu dsRNA sensor, and A-to-I editing disrupts both structure and function. Further, edited Alu RNAs inhibit activity of unedited Alu RNAs. Altering Alu RNA nucleotide sequence increases biological activity. Two classes of Alu RNAs exist, one class stimulates both IRF and NF-kB transcriptional activity and a second class only stimulates IRF transcriptional activity. Thus, Alu RNAs play important roles in human disease but may also have therapeutic potential.


Subject(s)
Alu Elements/genetics , Alu Elements/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Adenosine , COVID-19 , Humans , Inosine , RNA, Double-Stranded/genetics , RNA, Double-Stranded/immunology , SARS-CoV-2
18.
Int Immunopharmacol ; 100: 108071, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1364131

ABSTRACT

COVID-19 is the cause of a pandemic associated with substantial morbidity and mortality. As yet, there is no available approved drug to eradicate the virus. In this review article, we present an alternative study area that may contribute to the development of therapeutic targets for COVID-19. Growing evidence is revealing further pathophysiological mechanisms of COVID-19 related to the disregulation of inflammation pathways that seem to play a critical role toward COVID-19 complications. The NF-kB and JAK/STAT signaling pathways are highly activated in acute inflammation, and the excessive activity of these pathways in COVID-19 patients likely exacerbates the inflammatory responses of the host. A group of non-coding RNAs (miRNAs) manage certain features of the inflammatory process. In this study, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of COVID-19 disease. Furthermore, previous studies published in the online databases, namely web of science, MEDLINE (PubMed), and Scopus, were reviewed for the potential role of miRNAs in the inflammatory manifestations of COVID-19. Moreover, we disclosed the interactions of inflammatory genes using STRING DB and designed interactions between miRNAs and target genes using Cityscape software. Several miRNAs, particularly miR-9, miR-98, miR-223, and miR-214, play crucial roles in the regulation of NF-kB and JAK-STAT signaling pathways as inflammatory regulators. Therefore, this group of miRNAs that mitigate inflammatory pathways can be further regarded as potential targets for far-reaching-therapeutic strategies in COVID-19 diseases.


Subject(s)
COVID-19/etiology , Inflammation/etiology , Janus Kinases/physiology , MicroRNAs/physiology , NF-kappa B/physiology , SARS-CoV-2 , STAT Transcription Factors/physiology , Humans , Signal Transduction/physiology
19.
IUBMB Life ; 74(1): 93-100, 2022 01.
Article in English | MEDLINE | ID: covidwho-1353459

ABSTRACT

Unfolded protein response (UPR) and endoplasmic reticulum (ER) stress are aspects of SARS-CoV-2-host cell interaction with proposed role in the cytopathic and inflammatory pathogenesis of this viral infection. The role of the NF-kB pathway in these cellular processes remains poorly characterized. When investigated in VERO-E6 cells, SARS-CoV-2 infection was found to markedly stimulate NF-kB protein expression and activity. NF-kB activation occurs early in the infection process (6 hpi) and it is associated with increased MAPK signaling and expression of the UPR inducer IRE-1α. These signal transduction processes characterize the cellular stress response to the virus promoting a pro-inflammatory environment and caspase activation in the host cell. Inhibition of viral replication by the viral protease inhibitor Nelfinavir reverts all these molecular changes also stimulating c-Jun expression, a key component of the JNK/AP-1 pathway with important role in the IRE-1α-mediated transcriptional regulation of stress response genes with anti-inflammatory and cytoprotection function. The present study demonstrates that UPR signaling and its interaction with cellular MAPKs and the NF-kB activity are important aspects of SARS-CoV-2-host cell interaction that deserve further investigation to identify more efficient therapies for this viral infection.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/metabolism , Endoplasmic Reticulum Stress/drug effects , NF-kappa B/metabolism , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , COVID-19/virology , Caspase 9/metabolism , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , Humans , MAP Kinase Signaling System/drug effects , Models, Biological , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Unfolded Protein Response/drug effects , Vero Cells
20.
Expert Rev Anti Infect Ther ; 20(1): 17-21, 2022 01.
Article in English | MEDLINE | ID: covidwho-1258702

ABSTRACT

INTRODUCTION: Mediators of immunity and inflammation are playing a crucial role in COVID-19 pathogenesis and complications as demonstrated by several genetic and clinical studies. Thus, repurposing of drugs that possess anti-inflammatory and/or immune-modulatory effects for COVID-19 is considered a rational approach. AREAS COVERED: We analyze selected studies that correlated COVID-19 with dysregulated interferon and inflammatory responses while reflecting on our academic and real-life experience using non-steroidal anti-inflammatory drugs, nitazoxanide and azithromycin for management of COVID-19. Moreover, we interpret the results that suggested a potential survival benefit of low-dose aspirin and colchicine when used for COVID-19. EXPERT OPINION: Nitazoxanide/azithromycin combination has been first hypothesized by the author and practiced by him and several researchers to benefit COVID-19 patients due to a potential ability to augment the natural interferon response as well as their positive immunomodulatory effects on several cytokines. Furthermore, NSAIDs, that are unfortunately currently at best of second choice after paracetamol, have been early postulated and clinically practiced by the author to prevent or ameliorate COVID-19 complications and mortality due to their anti-inflammatory and immunomodulatory properties. Finally, we repeat our previous call to adopt our observational study that used these drugs in sufficiently powered double blind randomized clinical trials.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Azithromycin/therapeutic use , COVID-19 Drug Treatment , COVID-19/immunology , Cytokine Release Syndrome/drug therapy , Drug Repositioning , Interleukin-6/antagonists & inhibitors , Nitro Compounds/therapeutic use , Thiazoles/therapeutic use , COVID-19/complications , Cytokine Release Syndrome/complications , Cytokine Release Syndrome/immunology , Humans , Interferons/immunology , Interleukin-6/immunology , Observational Studies as Topic , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL